Addendum

Volume 20, Number 3 (1977), in the article "The Asymptotic Cost of Lagrange Interpolatory Side Conditions" by K. K. Beatson, pp. 288-295:

Let N_{n} be the space of trigonometric polynomials of degrec $\leqslant n,\left\{t_{i}\right\}_{i=1}^{\gamma}$ a set of γ (distinct) points in $[-\pi, \pi), C(T)$ the space of continuous 2π periodic functions, and let $A==A(f)=\left\{g \in C(T): g\left(t_{i}\right)==f\left(t_{i}\right) ; i=1, \ldots, \gamma\right\}$. Theorem 1.4 guarantees that, if $f \in C(T)$ is not a trigonometric polynomial, then $\lim \sup _{n \rightarrow \infty} d\left(f, A \cap N_{n}\right) / d\left(f, N_{n}\right) \leqslant 2$. Here $d(\cdot, \cdot)$ is the uniform metric. The purpose of this note is to show that the constant 2 on the right-hand side of this inequality cannot be decreased. This shows, more generally, that the constant 2 appearing in Theorems 1.4, 1.5 cannot be decreased.

Lemma. Let $A==\{g \in C(T): g(0)=-f(0)\}$. There is a function $f \in C(T)$ such that

$$
\limsup _{n \rightarrow \infty} \frac{d\left(f, A \cap N_{n}\right)}{d\left(f, N_{n}\right)} \geqslant 2 .
$$

Proof. Consider the sequence of functions $\left\{g_{i}(\theta)==\cos \left(3^{i} \theta\right)\right\}_{i-1}^{\infty}$. Since

$$
g_{i}(0)=(-1)^{j} \quad \text { when } \quad 0=\frac{j \pi}{3^{i}} ; \quad j=0, \pm 1, \pm 2, \ldots
$$

g_{i} has 2.3^{i} extrema on $[-\pi, \pi)$. Also $g_{k}, k \geqslant i$ has all the extrema of g_{i} with the same sign as g_{i}. Let $\sum_{i-1}^{\infty} a_{i}$ be some convergent series of positive numbers, and define

$$
f(\theta)==\sum_{i=1}^{\infty} a_{i} g_{2^{i}}(\theta)
$$

Consider the residual of best uniform approximation, to f from N_{n}. This residual is characterized by the existence of a set of $2 n+2$ points in $[-\pi, \pi)$, its value at each such point being equal in magnitude to its norm but alternating in sign. Hence the best uniform approximation to f from $N_{3^{\left(2^{i}\right)}}$ is

$$
h_{i}(\theta)==\sum_{k=1}^{i} a_{k} g_{2^{k}}(\theta)
$$

with

$$
f-h_{i}=r_{i}=\sum_{k=i=1}^{\infty} a_{k} g_{2^{k}}
$$

and

$$
\| f--h_{i} i^{\prime}=-d\left(f, N_{3^{\left(2^{i}\right)}}\right)==\sum_{k=i=1}^{\infty} a_{k},
$$

where i! •i denotes the uniform norm on $[-\pi, \pi]$.
Let t_{i} be any function in $N_{3^{\left(2^{i}\right)}} \cap A$. That is, $t_{i} \in N_{3^{\left(2^{i}\right)}}$ and $t_{i}(0)=f(0)$. Then

$$
\begin{equation*}
j f-t_{i} \|_{i}=\ddot{i}\left(f-h_{i}\right)-\left(t_{i}-h_{i}\right)\left|=\left|=r_{i}-p_{i}\right|^{\prime},\right. \tag{I}
\end{equation*}
$$

where $p_{i}=t_{i}-h_{i}$ is the perturbation of the best approximation.
The argument now proceeds using that

$$
p_{i}(0)=r_{i}(0)=\left\|_{i} r_{i}\right\|_{i} \quad \text { while } \quad r_{i}\left(\frac{\pi}{3^{\left(2^{i+2}\right)}}\right)=-i r_{i} \% ;
$$

and that the slope of $p_{i}(\theta)$ is related to its norm by Bernstein's inequality. We treat two cases.

Case 1. If $\left\|p_{i}\right\|^{\prime} \geqslant 3 d\left(f, N_{3^{\left(2^{i}\right)}}\right)=3\left\|r_{i}\right\|$, then $\left\|r_{i}-p_{i}^{\prime}\right\| \geqslant\left\|p_{i}\right\|-$ ${ }_{\mathrm{i}}^{\mathrm{i}} \boldsymbol{r}_{i}{ }^{\prime} \mathrm{ii} \geqslant 2 ;{ }_{i} r_{i}^{\prime \prime}!$.

Case 2. If $\left\|p_{i}\right\| \leqslant 3 d\left(f, N_{3^{\left(2^{i}\right)}}\right)=3\left|r_{i}\right|_{i}$, then using Bernstein's inequality

$$
\begin{aligned}
p_{i}\left(\frac{\pi}{3^{\left(2^{i+1}\right)}}\right) & =p_{i}(0)+O\left(\frac{\pi}{3^{\left(2^{i+1}\right)}}!p_{i}^{\prime}!!\right) \\
& =\left\|r_{i}\right\|\left(1+O\left(\frac{3 \pi \cdot 3^{\left(2^{i}\right)}}{3^{\left(2^{i+1}\right)}}\right)\right)=\| r_{i}!1(1+o(1)),
\end{aligned}
$$

and since $r_{i}\left[\pi / 3^{\left(2^{i+1}\right)}\right]=-i r_{i}!$ we find

$$
\left.\left\|r_{i}-p_{i}\right\| \geqslant\left|\left(r_{i}-p_{i}\right)\left(\frac{\pi}{3^{\left(2^{i+1}\right)}}\right)\right|=2 \right\rvert\, i r_{i}!(1+o(1)) .
$$

Thus from (1) and the estimates for i| $r_{i}-p_{i} \|$ above we have

$$
\lim _{f \rightarrow \infty} \sup \left(d\left(f, N_{3^{\left(2^{i}\right)}} \cap A\right)!d\left(f, N_{3^{\left(2^{i}\right)}}\right)\right) \geqslant 2
$$

Remarks. The proof of the lemma requires only that each a_{i} be positive and that the series $\sum_{i=1}^{\infty} a_{i}$ converges. Hence there is no requirement that f be "nonsmooth"; suitable choice of the a_{i} will in fact make f entire. Also since the function f of the lemma is even, and the constraint is at $\theta=\sim 0$, one may use the usual change of variable $x=\cos \theta$ to obtain a result about uniform approximation by algebraic polynomials on $[-1,1]$. This shows that
the constant 2 in the theorem of S. Paszkowski ("On Approximation with Nodes," Rozprawy Mat. 14 (1957), 1-61), which we generalised, is best possible.

The original article contains several typographical errors. In the statement of Theorem 1.1 replace $X=[a, b]$ by $X=C[a, b]$. On page 290 , line 8 , replace the reference to [2, Theorem 4.1] by a reference to [2, Theorem 4.2]. In the statement of Corollary 1.6 , replace the condition $f\left(t_{i}\right)<\|f\|$ by the condition $\left|f\left(t_{i}\right)\right|<\|f\|$.

